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1 Introduction

Phonetic transcriptions contain rich information
about language. First, the sequential patterns
in phonetic transcripts reveal information about
the language’s phonotactics. ~When combined
with lexical information, this can help to grow
or correct pronunciation dictionaries and to im-
prove grapheme-to-phoneme prediction. Second,
the places where pronunciations deviate from the
norm can be equally informative; for example, by
providing cues for speaker traits such as accent,
dialect or sociolect. Interesting in itself, detecting
speaker characteristics can also be used to improve
speech recognition system performance (Biadsy,
2011).

In this extended abstract we describe on-going
work to automatically analyze both the regular-
ities and the exceptions (deviations) in phonetic
sequences. We use the Multi-Factor Sparse Plus
Low Rank Language Model (Hutchinson et al.,
2013), which was shown to effectively model reg-
ularities and exceptions in word sequences (e.g.
by identifying lexical deviations characteristic of
topic or speaker role). Preliminary results model-
ing commonalities and variation between dialects
of American English are promising and suggest
several extensions to this work.

2 Sparse + Low Rank Language Models

The Sparse Plus Low Rank Language Model
(SLR-LM) is an exponential language model
(Hutchinson et al., 2012) that defines the follow-
ing conditional probability of a token x given a
history h:

exp ((2)" (S + L)¢(h))
> e exp (Y(2)T(S + L)g(h))
Here ¢(z) € R% is a feature function that maps

token x to a feature representation, while ¢(h) €
R% is the feature function for the history. Low

p(z[h) = (D)

rank matrix L € R%*% and sparse matrix S €
R%*de are the parameters. L has a compact sin-
gular value decomposition, L = UXV7, so

(@) Lo(h) = ¢(2)"USVT¢(h)

(UTw()" = (VTo(h)
= (@) S(h).

Therefore, the L matrix induces continuous
low-dimensional representations 1/3(35) of tokens
(UT4(x)) and histories (¢(h) = VT¢(h)). The
probability of a token following a history is largely
governed by ¢ (x)TS¢(h), the weighted inner
product between these low-dimensional represen-
tations. By restricting the rank (i.e. dimension),
tokens are soft-clustered through this embedding:
the weight matrix L effectively models what kind
of tokens follow what kind of histories. The pat-
terns learned by these weights can be mislead-
ing, however, as in in the case of common mul-
tiword sequences (e.g. “united states’), where the
probability of the bigram is not well described by
the kind of token “states” is or the kind of his-
tory “united” is. The sparse matrix S plays the
role of correcting weights (and thus probabilities)
for such exceptional n-grams that are not well-
modeled by the low rank matrix.

3 Preliminary Experiments and Results

Our preliminary experiments use the TIMIT Cor-
pus (Garofolo et al., 1993), which provides di-
alect labels for each speaker as well as manual
phonetic transcriptions of each utterance. Alto-
gether, there are 462 speakers, with 10 utterances
per speaker including two utterances spoken by
each speaker explicitly designed to elicit dialectal
variation. The training data totals 167,840 phone
tokens, with a vocabulary of 60 phones.

We use a generalization of the SLR-LM known
as the Multi-Factor SLR-LM (Hutchinson et al.,
2013). This model incorporates additional sparse



matrices, each designed to model distinct kinds of
influences on the token sequence (e.g. due to a par-
ticular topic, or a particular speaker, etc.). In our
case, in addition to the global low rank matrix L,
and a global sparse matrix Sy, there are eight addi-
tional sparse matrices, one for each of eight dialect
regions. The probability of token z following his-
tory h in the subset of the corpus corresponding to
the 7th dialect region is

exp (¢(z)" (L + So + Si)¢(h))
>0 exp (Y(¢)T (L + So + Si)p(h))

The non-zero elements of each sparse matrix will
correspond to the n-grams whose probabilities de-
viate most from the global model; here, the ex-
ceptions most characteristic of a given dialect. We
train the model as described in (Hutchinson et al.,
2013), using one-hot (indicator) feature functions,
1) and ¢. Upon training, we obtain a rank-4 L ma-
trix, an Sy matrix with 177 non-zero entries, and
eight dialect-specific sparse matrices with between
2 and 37 non-zero entries.

The low-dimensional continuous phone repre-
sentations are plotted in Figs. 1a (consonants) and
1b (vowels) after further reducing dimensional-
ity for purposes of display using multidimensional
scaling. The intuitive clustering of phones con-
firms that the low rank model is indeed learning
phone sequence regularities.

The elements of Sy capture sequences that of-
ten function as a single unit; in our case the largest
non-zero entries global sparse matrix are the se-
quences of stop closure then stop release (e.g. “gcl
g”, “pcl p”). Other large values in Sy are short
words: “y ux” (you), “aar” (are), “dh ax” (the).

Some of the non-zero elements in the dialect-
specific sparse matrices capture true dialectal vari-
ation (Clopper and Pisoni, 2007); e.g. “iy z” in
the Southern dialects, as in “g r iy z iy” versus
“g riy s iy”. However, many exceptions in these
matrices simply serve to boost the probability of
phone n-grams that are frequent due to lexical
content. While this may be desirable in sponta-
neous speech, where word choice itself can signal
dialect, in a read speech corpus like TIMIT this is
an artifact and would be better normalized out.

P(zlh) =

4 Conclusions and Future Work

The on-going work described in this abstract uses
the Multi-Factor SLR-LM to analyze phonetic
regularities and exceptions in American English.
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Figure 1: 2-d visualizations of 4-d continuous
phone representations.

Qualitatively good continuous representations of
phones are learned, and the global sparse weight
matrix accurately identifies phone n-grams that
often function as a single unit, but dialect-specific
exceptions capture only a limited amount of true
dialectal pronunciation variation. There are many
ways that we plan to extend this work. More
should be done to normalize the input data to
reduce the effect of word choice on the learned
weights. One could also use a Multi-Factor SLR-
LM to jointly model a more diverse and overlap-
ping set of influences on pronunciation: with ap-
propriately annotated data, the model could cap-
ture exceptions due to age, gender, accent, educa-
tion level, etc. One could even train multi-lingual
models to jointly model phonotactic similarities
and differences between languages. Finally, the
robustness of the model to the high noise found in
automatic phonetic transcripts should be explored.
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