
The Tensor Deep Stacking Network Toolkit

David Palzer and Brian Hutchinson
Computer Science Department
Western Washington University

{David.Palzer, Brian.Hutchinson}@wwu.edu

Abstract-In this paper we introduce the Tensor Deep Stack­
ing Network (T-DSN) Toolkit, an implementation of the T-DSN

deep learning architecture. T he toolkit consists of a Python
library and a set of accompanying helper scripts that allow you
to train and evaluate T-DSN models. T he toolkit is designed to
be portable, modular, efficient and parallelized. Our goal for
the toolkit is to promote research on this and related deep
learning architectures. The T-DSN Toolkit is open source and
free for non-commercial use. In this paper, we summarize the
core functionality of the toolkit and discuss its design and
implementation. We also present a new set of experiments on
standard machine learning datasets, demonstrating the model's
effectiveness.

I. INTRODUCTION

Deep learning continues to gain prominence in machine
learning, driven in large part by the impressive results it
has achieved, particularly in application areas like speech
recognition [1], [2] and image classification [3], [4]. In recent
years, a substantial amount of work has gone into improving
existing deep architectures (e.g. with linear rectified units
[5], dropout [6], discriminative pre-training [7], Hessian-free
second order optimization [8], etc.) and developing new ones
(e.g. Deep Boltzmann Machines [9], sum-product-networks
[10], etc.).

Of particular relevance to this work, in [11], Deng and
Yu introduced the novel "Deep Convex Network," also known
as the Deep Stacking Network (DSN). Unlike standard deep
architectures [12], which center around the idea of learning
a deep hidden representation of the data, propagating the
hidden representations from layer to layer, the DSN is a
stacked architecture that propagates the (increasingly accurate)
output predictions from layer to layer. In addition to its strong
empirical performance [13], [14], [15], the DSN has several
desirable properties: it does not require any pre-training nor
does it need end-to-end fine-tuning, and it can be naturally
parallelized using CPU or GPU clusters [16].

The Tensor Deep Stacking Network [11], [17] (T-DSN) is
an extension of DSN architecture. Rather than rely upon a
single hidden layer in each block, it uses two parallel hidden
representations in order to incorporate second order informa­
tion from the non-linearly transformed input data into the
model. This has the effect of moving more of the parameters
within a block from the lower layer, the optimization of which
is non-convex, to the upper layer, which has a convex, closed­
form solution, which in turn has the effect of making each layer
more powerful (for a fixed number of free parameters). It was
shown that the T-DSN improves performance over the DSN
in [l7], [11], and a strategy for parallelizing the computation
was presented in [16], [11].

978-1-4799-1959-8/15/$31.00 @2015 IEEE

Fig. 1: An illustration of the stacked nature of the T-DSN.

In this paper we introduce the Tensor Deep Stacking Net­
work Toolkit, I an open source Python implementation of the T­
DSN that is freely available for non-commercial use. Our goal
for developing and releasing this toolkit is to facilitate research
on this and related deep architectures. We have designed it to
be portable, easy-to-use and efficient. In this paper we also
report several new results on standard datasets that demonstrate
the T-DSN's effectiveness.

The remainder of the paper is organized as follows: Section
II sununarizes the T-DSN model and training algorithms,
Section III describes the key features of the T-DSN Toolkit,
in Section IV we report a new set of experimental results
on standard machine learning datasets, and in Section V we
conclude and address priorities for future extensions to the
toolkit.

11. THE TENSOR DEEP STACKING NETWORK

As shown in Figure 12, a T-DSN consists of several
stacked blocks, each of which is a modified neural network
with a linear activation on the output. More specifically, the

1 http://fw.cs.wwu.edurhutchib2/software/tdsn/
2 A variant this figure previously appeared in [11].

input representation x E ll�P is mapped through two weight
matrices, W1 and W2 and through a sigmoid non-linearity to
two hidden representations, hI E RL1 and h2 E RL2. These
two hidden representations are mapped multilinearly through
an upper layer third-order weight tensor U E RL1 X

L2 xc. That
is, the output prediction vector y E RC is defined by:

L1 L2
Yk = L L Uijkhlih2j

i=1 j=1
(1)

Although this formulation is powerful, matrices are in
practice more convenient to work with than tensors, so the fol­
lowing equivalent formulation can be made. Let U_ E RL1L2 xC

denote the unfolding of tensor U [18], and let � denote the
Kronecker product of the hidden representations: h = hI ® h2.
Then Y can be equivalently written as:

(2)

One defining characteristic of the DSN and the T-DSN is
that the upper layer weights, U, are chosen to be the solution
to the least squares problem:

(3)

Where the N columns of iI are the hidden representations
11 of the N data points in the training set, and likewise the
columns of T E RcxN are the desired (target) output vectors.
For classification tasks, each column of T is typically a one­
hot (indicator) representation of the true output class. The input
datapoints are themselves assembled as columns of a matrix
X E RDxN. Given the closed form solution for U, the gradient
of the objective in Eqn. 3 can be found for W1 and W2.
Given the gradients, any first-order optimization technique can
be used; by default, the T-DSN Toolkit uses scipy's l-BFGS
optimizer [19].

One important practical consideration for the computation
of the gradient and objective function is breaking large ma­
trices into smaller "chunks." This serves two purposes: first,
it reduces the amount of data that must be stored in memory
simultaneously, and second, it makes it easy to parallelize the
problem over local cores or even over nodes in a compute
cluster. The T-DSN Toolkit is currently locally parallelized.
Table 13 describes how the overall computation and each of
the intermediate variables can be computed in terms of the
individual batches. Two types of superscript are required to
indicate a given matrix in a set of matrices:

1) The angle bracketed superscript k (e.g. W(k)) denotes
the k'th chunk of a matrix, split along the second
dimension (of size N) into P equal sized chunks; for
example,

w = [W(I) W(2) ... w(P)]

2) The square bracketed superscript k (e.g. B [k]) denotes
one of a set of matrices, all with the same dimension,
each computed using data from a single chunk, that
will ultimately be summed together into a single
matrix.

3 A variant of this table appeared previously in [11]

Once a block is trained, and we have our prediction matrix
(Y), we can prepare the next block. This involves concate­
nating our prediction matrix with the original feature matrix
X. This concatenated data plays the role of the input data
X for the training of the next block. This can be interpreted
as augmenting the original features (X) with an increasingly
accurate estimate of the predictions (Y).

Ill. TOOLKIT DESIGN AND IMPLEMENTATION

A. Design Goals

The T-DSN Toolkit is written in the Python scnptmg
language. This language was chosen to help us achieve the
following design goals:

• Portability. One of our aims in designing the toolkit
was to have it be portable so that it can be used in a
wide range of environments with minimal dependence
on third party packages.

• Modularity. The T-DSN is heavily modularized into
a hierarchical set of functions so that researchers can
easily manipulate the operation of the network to
modify and extend T-DSN functionality.

• Efficiency. At the core of our computation is the
numpy module. This module uses the BLAS library4,
and our operations depend upon standard, highly op­
timized numerical computation software.

• Parallelizability. Parallelizing the T-DSN is discussed
in detail in [11]. The T-DSN toolkit is locally par­
allelized on a CPU, though it could be extended
to parallelize locally on a GPU or over nodes in a
compute cluster.

B. Major Classes of Functions

1) Loading and Saving: Four functions are used for file
110. matload and mat save are used to load and save dense
matrices, while smatload and smatsave load and save
sparse matrices. All of the binary matrix file formats used are
described in Sec. Ill-E. Our loading and saving functions have
been optimized for speed.

2) Computational: A set of functions compute intermediate
variables during the evaluation of the gradient or objective
value. Each of these is named compute_X, where X is the
name of the intermediate variable. See Table I for the mapping
between intermediate variable and function.

3) Parallelization: There are two functions that are respon­
sible for setting up and spawning our parallel processes.

• parallel_compute_and_sum spawns processes
for each chunk, and then sums the resulting matrices;
used to compute each variable with a superscript [k]
and the sununed version (e.g. B from each B[k]).

• parallel_compute_and_list used to spawn
processes that compute each variable in Table I with
a superscript (k) (e.g. computing each H ik)).

4http://www.netlib.orglblas

Variable Dimensions Definition Toolkit Function
H(k) Li X Nk cr(W�)X(k» compute_h

\) '" k) H
I

) Lx Nk H(k) 8H(k) (1) (2) compute_hh
B kl LxL fI(k)fI(k)T compute_b_aux
Flkl LxC fI(k)T(k)T compute_f_aux
B LxL L:�l Blkl compute_ b
F LxC L:�l Flkl compute_ f

fIt(k) Nk X L fI(k)TB-1 compute_hht
U LxC B-1F compute_u

Dlkl CxL T(k)fIt(k) compute_d_aux
D CxL L:�l Dlkl compute_ d
slkl 1 X 1 IIUTfI(k) - T(k) II}.. compute_s_aux
s 1 X 1 L:�l slkl compute_s

eT(k) Lx Nk 2fIt(k)FD _ T(k)TD compute_ theta t -

'IT(k)
\')

L, X Nk . _ (L, X N . (k): T(k» W(l),n - E(i.n) 8 H(2)/ e compute-psil
'IT k) L2 X Nk . _ (k) . L2x :T(k) w(2)]n - (H(l) 8 E(j,n) , e) compute_psi2

I�l G('i) D X L, X (k) (Hi�i 0 (1 - Hi�i) 0 'IT i�i) compute_gi_aux
Glkl D X (L, +L2) [Gl�l) Gi�l)l compute_9i
G D X (L, + L2) L:�l Glkl compute_g

TABLE I: Details of the steps to compute the objective function and gradient, including the mathematical definition of intermediate
variables and the corresponding toolkit functions to perform the computation.

We opt to spawn multiple processes, rather than multiple
threads, due to a threading limitation in Python's Global
Interpreter Lock. Each process must be passed the relevant
intermediate input variables for its chunk (k) of the data.

C. Core Functionality

The functionality supported by the toolkit can either be
imported as a module, or run using our standalone script from
the command-line. In the latter case, the script is responsible
for parsing the cOlllinand-line arguments, setting default val­
ues, reading in the initial files, starting the appropriate T-DSN
operation, and reporting any results, if requested.

1) Training: To train a T-DSN, you must provide a dense
input feature file X and a sparse target file T. You may also
specify the chunk size, number of blocks to stack, among other
options. After the training of a block has converged, the toolkit
will write the prediction matrix, Y, to disk, along with the
weight matrices W1, W2 and U.

2) Testing: In test-mode, given a trained model, the T-DSN
toolkit allows one to generate predictions for a new test set.
These new predictions can be evaluated if the corresponding
labels are provided in a new target matrix.

D. Dependencies

While we try to mmllllize the number of third party
modules, we do make use of several standard Python modules
for the sake of efficiency and reliability. Specifically, this
toolkit uses the following Python modules: numpy, scipy [20],
sys, struct, gc, time, argparse, and mUltiprocessing. All of the
modules are distributed by default with python, except for
numpy and scipy.

E. File Formats

The T-DSN toolkit uses two binary file fonnats for its
files. A dense format is used for feature, weight and prediction
matrices. The dense format for an N x M matrix consists of:

1) N as a 8-byte signed integer.
2) M as a 8-byte signed integer.
3) The N x M values of the matrix, stored in column

major order, each as 8-byte double precision values.

A sparse matrix format is used for the targets. This format for
an N x M matrix with K non-zero entries consists of:

1) N as a 8-byte signed integer.
2) M as a 8-byte signed integer.
3) K as a 8-byte signed integer.
4) All non-zero entries are then stored in any order as

triples (i,j,x):
a) i as a 8-byte double precision value (row

index5 for non-zero value).
b) j as a 8-byte double precision value (column

index for non-zero value).
c) x as a 8-byte double precision value (value).

F Hyper-Parameters

The T-DSN has a few tunable hyper-parameters; most
notably, the number of hidden units in each hidden layer
(L1 and L 2) and the total number of blocks in the network.
Ultimately, these hyper-parameters should be tuned empirically
for your problem, but to give intuition for these we report
results on several datasets over a range of values in the
following section.

G. Parallelizing

Because memory, and not speed, was the original moti­
vation for parallelizing the T-DSN, the toolkit currently only
parallelizes over CPU cores. By default, the toolkit detects the
number of cores and amount of memory available on the sys­
tem, and then breaks the problem into sufficiently small chunks
such that each core can be processing a chunk in memory at
the same time. Each time a parallelizable calculation is run,
each core is assigned a set of chunks to process. Inter-process

SRow and column indexing starts at 1 for Matlab compatibility.

Data Set Ntrain Ntest D C L; Depth
Iris 136 7 4 3 4 2

Car 1,296 432 21 4 75 3

Abalone 3,113 1,044 10 3 5 7

TABLE 11: Dataset statistics, including the number of training
samples (Ntrain), the number of test samples (Ntest), the
input feature dimension (D) and the number of classes (C),
and T-DSN hyperparameters selected by grid-search, including
hidden layer size (Li) and model depth in blocks.

communication is accomplished via disk. For simplicity, the
toolkit currently supports only local parallelization on a CPU,
although we plan to parallelize over CPU or GPU clusters in
future releases.

IV. EXPERIMENTS

In this section, we evaluate the T-DSN Toolkit on several
standard machine learning datasets and report the results.

A. Datasets

Our three datasets are freely available from the UCI Ma­
chine Learning Repository.6 Each dataset is split into disjoint
train and test sets. Table 11 provides a summary of the dataset
characteristics, including the number of samples in train and
test, the dimension of the input and the number of classes.

1) lris: Roland Fisher's famous Iris data set consists of a
set of iris flowers. There are only four features (sepal length,
sepal width, petal length, petal width), and each flower has
one of three class labels (iris setosa, iris virginica, and iris
versicolor).

2) Car: The Car Evaluation data set is a collection of
vehicles, whose attributes capture various properties of a
car, and whose labels are whether the car is unacceptable,
acceptable, good, or very good.

3) Abalone: The Abalone data set is a collection of phys­
ical measurements of abalone that can be used to predict
the age of a specimen. Each specimen has eight features;
sex, length, diameter, height, whole weight, shucked weight,
viscera weight, and shell weight. The three class labels are age
ranges: 1-8 years old, 9-10 years old, and 11 + years old.

B. Tuning

There are two hyperparameters of the T-DSN to tune: 1)
Li (= L1 = L2)' the number of hidden nodes in each of
the two parallel layers, and 2) the depth of the model, in
blocks. We use five-fold cross-validation on the training set
to select these hyperparameters. The specific hyperparameter
values found in experiments our are presented in Table 11.

C. Results

We report model test accuracy in Table IIL7 For compari­
son, we cite several previously reported results.

6https:llarchive.ics.uci.edu/ml/datasets.html
7Due to the smaU sample size of the Iris test set, we report an averaged

accuracy, over 50 systems trained on the fixed training set. (There is variation
in test set accuracy because training is non-deterministic due to random weight
initialization and non-convexity.)

Method Accuracy
T-DSN 0.986

HIDER [21] 0.967

CORE [22] 0.966

Naive-Bayes [22] 0.955

MCADT [23] 0.953

C4.5 [22] 0.937

(a) Iris

Method Accuracy
T-DSN 0.970

TAN [24] 0.941

BAN [24] 0.940

Naive-Bayes [24] 0.866

GBN [24] 0.861

(b) Car

Method Accuracy
HFRBCS [25] 0.702

Chi-5 [25] 0.667

T-DSN 0.663

[shibuchi05 [25] 0.661

Chi-3 [25] 0.630

C4.5 [25] 0.156

(c) Abalone

TABLE Ill: Experimental results for the Iris (a), Car (b) and
Abalone (c) datasets. Results within one standard deviation of
T-DSN are colored in blue.

To understand the effect of our hyperparameters, we vi­
sualize the average accuracy over 10 random train-test splits
in Figure 2. For brevity and clarity of the display, we show
only the values for Li and depths that are adjacent (in our grid
search space) to the optimal hyperparameters selected during
tuning. The figure also visualizes a ±1 standard deviation
interval, also estimated from our 10 random train-test splits,
to give a sense of the variability of the results.

D. Analysis

1) lris: Although our test set accuracy shown in Table III
is higher than the baseline methods we compare against, the
small test set size means that all of the baselines fall within one
standard deviation of our result. Due to the simplicity of this
task, we need only a few hidden nodes in each parallel layer.
Our tuning selected L1 = L2 = 4, although Figure 2 shows
that L1 = L2 = 3 actually slightly outperforms on average.
Although it is not shown in Figure 2, using only one or two
hidden nodes per parallel layer leads to heavy degradations in
performance. Moderately deep (3-6) block T-DSNs seem to
work best for this dataset.

2) Car: On the car evaluation dataset, the T-DSN out­
performs the baseline methods, with an almost 50% relative
reduction in error over the closest baseline. With a relatively
larger amount of data, tuning our model finds that hidden layer
sizes of Li = 75 is preferable, although Figure 2 shows that
there is in fact a wide range of Li that perform comparably.
The figure also suggests that our selected block depth of 3 may
not be optimal, and that performance may be further improved
with slightly deeper models.

3) Abalone: The T-DSN is outperformed by one of the
methods reported in [24], while it performs comparably to
two others and outperforms the last two. Despite the larger

Iris Car Abalone
100 99.4 90

99.2 80
95 99

70
98.8

>- 90 i'798.6 >- 60
u u

� '" '"
:J � 98.4 � 50
u u u
u u u « 85 « 98.2 « 40

98
_L;=50 30 _L;=4 97.8

97.6
_L;=75 20 _L;=5

L;=lOO _L;=10
97.4 la

4 2 3 4 la
Stacking Depth Stacking Depth Stacking Depth

Fig. 2: Accuracy confidence intervals for each data set in the neighborhood of the optimal tuned hyperparameters.

traInIng set size, tuning select the small Li = 5, presumably
due to the small input and output dimensions. Tuning favored
a deeper model, of depth seven, although Figure 2 shows that
performance degrades as the model gets too deep.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduce the Tensor Deep Stacking
Network Toolkit, an open-source implementation of the Tensor
Deep Stacking Network [11] that is freely available for non­
commercial use. The toolkit is implemented in Python and
is designed to be easy to use, portable and efficient, with
minimal dependencies. Our hope is that the availability of this
toolkit will accelerate research on this and related architectures.
We also present several new results and analyses on standard
machine learning datasets, demonstrating the effectiveness of
the model. Cumulatively over the three reported datasets, our
model outperforms six of our baselines, is beaten by one, and
performs comparably to seven. There are many ways the toolkit
could be extended, and development is on-going. Priorities for
future extensions include parallelization over a compute cluster
and support for GPU parallelization.

REFERENCES

[1] L. D. George Dahl, Dong Yu and A. Acero, "Context-dependent pre­
trained deep neural networks for large vocabulary speech recognition,"
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,
no. 1, pp. 30-42, January 2012.

[2] G. H. Li Deng and B. Kingsbury, "New types of deep neural network
learning for speech recognition and related applications: An overview,"
in Proc. ICASSP, 2013.

[3] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid­
huber, "Flexible, high performance convolutional neural networks for
image classification," in Proc. Joint Conference on Artificial Intelli­
gence, 2011, pp. 1237-1242.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," in Proc. Neural Information
Processing Systems, 2012, pp. 1097-1105.

[5] Y. Nair and G. E. Hinton, "Rectified linear units improve restricted
boltzmann machines," in Proc. ICML, 2010.

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, "Improving neural networks by preventing co­
adaptation of feature detectors," The Computing Research Repository,
2012.

[7] X. C. Frank Seide, Gang Li and D. Yu, "Feature engineering in context­
dependent deep neural networks for conversational speech transcrip­
tion," in Proc. ASRU, 2011.

[8] J. Martens, "Deep learning via hessian-free optimization," in Proc.
ICML,201O.

[9] R. R. Salakhutdinov and G. E. Hinton, "Deep boltzmann machines," in
Proc. AfSTATS, 2009.

[10] H. Poon and P. Domingos, "Sum-product networks: A new deep
architecture," in Proc. UAf, 2011.

[11] B. Hutchinson, L. Deng, and D. Yu, "Tensor deep stacking network,"
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, pp. 1944-1957,2013.

[12] Y. Bengio, "Learning deep architectures for AI," Foundations and
Trends in Machine Learning, vol. 2, no. I, pp. 1-127, 2009.

[13] L. Deng and D. Yu, "Deep convex network: A scalable architecture for
speech pattern classification," in Proc. Interspeech, 2011.

[14] D. Y. Li Deng and J. Platt, "Scalable stacking and learning for building
deep architectures," in Proc. ICASSP, 2012.

[15] D. H.-T. Gokhan Tur, Li Deng and X. He, "Towards deeper under­
standing deep convex networks for semantic utterance classification,"
in Proc. ICASSP, 2012.

[16] L. Deng, B. Hutchinson, and D. Yu, "Parallel training of deep stacking
networks," in Interspeech, 2012.

[17] B. Hutchinson, L. Deng, and D. Yu, "A deep architecture with bilinear
modeling of hidden representations: Applications to phonetic recogni­
tion," in Proc. ICASSP, 2012.

[18] T. G. Kolda and B. W. Bader, "Tensor decompositions and applications,"
SIAM Review, vol. 51, no. 3, pp. 455-500, September 2009.

[19] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course. Kluwer Academic Publishers, 2004.

[20] E. Jones, T. Oliphant, P. Peterson et aI., "SciPy: Open source scientific
tools for Python," 2001-. [Online]. Available: hnp://www.scipy.org/

[21] J. S. Aguilar-Ruiz, R. Ginlldez, and J. C. Riquelme, "Natural encoding
for evolutionary supervised learning," IEEE Transactions on Evolution­
ary Computation, 2007.

[22] K. C. Tan, Q. Yu, and J. H. Ang, "A coevolutionary algorithm for rules
discovery in data mining," International Journal of Systems Science,
2006.

[23] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, "Multiclass
alternating decision trees," in Proc. ECML, 2002, pp. 161-172.

[24] J. Cheng and R. Greiner, "Comparing bayesian network classifiers," in
Proc. UAI, 1999, p. 101.

[25] A. Fernandez, M. J. del Jesus, and F. Herrera, "Hierarchical fuzzy rule
based classification systems with genetic rule selection for imbalanced
data sets," International Journal of Approximate Reasoning, 2009.

