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Abstract-In this paper we introduce the Tensor Deep Stack­
ing Network (T-DSN) Toolkit, an implementation of the T-DSN 

deep learning architecture. T he toolkit consists of a Python 
library and a set of accompanying helper scripts that allow you 
to train and evaluate T-DSN models. T he toolkit is designed to 
be portable, modular, efficient and parallelized. Our goal for 
the toolkit is to promote research on this and related deep 
learning architectures. The T-DSN Toolkit is open source and 
free for non-commercial use. In this paper, we summarize the 
core functionality of the toolkit and discuss its design and 
implementation. We also present a new set of experiments on 
standard machine learning datasets, demonstrating the model's 
effectiveness. 

I. INTRODUCTION 

Deep learning continues to gain prominence in machine 
learning, driven in large part by the impressive results it 
has achieved, particularly in application areas like speech 
recognition [1], [2] and image classification [3], [4]. In recent 
years, a substantial amount of work has gone into improving 
existing deep architectures (e.g. with linear rectified units 
[5], dropout [6], discriminative pre-training [7], Hessian-free 
second order optimization [8], etc.) and developing new ones 
(e.g. Deep Boltzmann Machines [9], sum-product-networks 
[10], etc.). 

Of particular relevance to this work, in [11], Deng and 
Yu introduced the novel "Deep Convex Network," also known 
as the Deep Stacking Network (DSN). Unlike standard deep 
architectures [12], which center around the idea of learning 
a deep hidden representation of the data, propagating the 
hidden representations from layer to layer, the DSN is a 
stacked architecture that propagates the (increasingly accurate) 
output predictions from layer to layer. In addition to its strong 
empirical performance [13], [14], [15], the DSN has several 
desirable properties: it does not require any pre-training nor 
does it need end-to-end fine-tuning, and it can be naturally 
parallelized using CPU or GPU clusters [16]. 

The Tensor Deep Stacking Network [11], [17] (T-DSN) is 
an extension of DSN architecture. Rather than rely upon a 
single hidden layer in each block, it uses two parallel hidden 
representations in order to incorporate second order informa­
tion from the non-linearly transformed input data into the 
model. This has the effect of moving more of the parameters 
within a block from the lower layer, the optimization of which 
is non-convex, to the upper layer, which has a convex, closed­
form solution, which in turn has the effect of making each layer 
more powerful (for a fixed number of free parameters). It was 
shown that the T-DSN improves performance over the DSN 
in [l7], [11], and a strategy for parallelizing the computation 
was presented in [16], [11]. 
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Fig. 1: An illustration of the stacked nature of the T-DSN. 

In this paper we introduce the Tensor Deep Stacking Net­
work Toolkit, I an open source Python implementation of the T­
DSN that is freely available for non-commercial use. Our goal 
for developing and releasing this toolkit is to facilitate research 
on this and related deep architectures. We have designed it to 
be portable, easy-to-use and efficient. In this paper we also 
report several new results on standard datasets that demonstrate 
the T-DSN's effectiveness. 

The remainder of the paper is organized as follows: Section 
II sununarizes the T-DSN model and training algorithms, 
Section III describes the key features of the T-DSN Toolkit, 
in Section IV we report a new set of experimental results 
on standard machine learning datasets, and in Section V we 
conclude and address priorities for future extensions to the 
toolkit. 

11. THE TENSOR DEEP STACKING NETWORK 

As shown in Figure 12, a T-DSN consists of several 
stacked blocks, each of which is a modified neural network 
with a linear activation on the output. More specifically, the 

1 http://fw.cs.wwu.edurhutchib2/software/tdsn/ 
2 A variant this figure previously appeared in [11]. 



input representation x E ll�P is mapped through two weight 
matrices, W1 and W2 and through a sigmoid non-linearity to 
two hidden representations, hI E RL1 and h2 E RL2. These 
two hidden representations are mapped multilinearly through 
an upper layer third-order weight tensor U E RL1 X 

L2 xc. That 
is, the output prediction vector y E RC is defined by: 

L1 L2 
Yk = L L Uijkhlih2j 

i=1 j=1 
(1) 

Although this formulation is powerful, matrices are in 
practice more convenient to work with than tensors, so the fol­
lowing equivalent formulation can be made. Let U_ E RL1L2 xC 

denote the unfolding of tensor U [18], and let � denote the 
Kronecker product of the hidden representations: h = hI ® h2. 
Then Y can be equivalently written as: 

(2) 

One defining characteristic of the DSN and the T-DSN is 
that the upper layer weights, U, are chosen to be the solution 
to the least squares problem: 

(3) 

Where the N columns of iI are the hidden representations 
11 of the N data points in the training set, and likewise the 
columns of T E RcxN are the desired (target) output vectors. 
For classification tasks, each column of T is typically a one­
hot (indicator) representation of the true output class. The input 
datapoints are themselves assembled as columns of a matrix 
X E RDxN. Given the closed form solution for U, the gradient 
of the objective in Eqn. 3 can be found for W1 and W2. 
Given the gradients, any first-order optimization technique can 
be used; by default, the T-DSN Toolkit uses scipy's l-BFGS 
optimizer [19]. 

One important practical consideration for the computation 
of the gradient and objective function is breaking large ma­
trices into smaller "chunks." This serves two purposes: first, 
it reduces the amount of data that must be stored in memory 
simultaneously, and second, it makes it easy to parallelize the 
problem over local cores or even over nodes in a compute 
cluster. The T-DSN Toolkit is currently locally parallelized. 
Table 13 describes how the overall computation and each of 
the intermediate variables can be computed in terms of the 
individual batches. Two types of superscript are required to 
indicate a given matrix in a set of matrices: 

1) The angle bracketed superscript k (e.g. W(k)) denotes 
the k'th chunk of a matrix, split along the second 
dimension (of size N) into P equal sized chunks; for 
example, 

w = [W(I) W(2) ... w(P)] 

2) The square bracketed superscript k (e.g. B [k]) denotes 
one of a set of matrices, all with the same dimension, 
each computed using data from a single chunk, that 
will ultimately be summed together into a single 
matrix. 

3 A variant of this table appeared previously in [11] 

Once a block is trained, and we have our prediction matrix 
(Y), we can prepare the next block. This involves concate­
nating our prediction matrix with the original feature matrix 
X. This concatenated data plays the role of the input data 
X for the training of the next block. This can be interpreted 
as augmenting the original features (X) with an increasingly 
accurate estimate of the predictions (Y). 

Ill. TOOLKIT DESIGN AND IMPLEMENTATION 

A. Design Goals 

The T-DSN Toolkit is written in the Python scnptmg 
language. This language was chosen to help us achieve the 
following design goals: 

• Portability. One of our aims in designing the toolkit 
was to have it be portable so that it can be used in a 
wide range of environments with minimal dependence 
on third party packages. 

• Modularity. The T-DSN is heavily modularized into 
a hierarchical set of functions so that researchers can 
easily manipulate the operation of the network to 
modify and extend T-DSN functionality. 

• Efficiency. At the core of our computation is the 
numpy module. This module uses the BLAS library4, 
and our operations depend upon standard, highly op­
timized numerical computation software. 

• Parallelizability. Parallelizing the T-DSN is discussed 
in detail in [11]. The T-DSN toolkit is locally par­
allelized on a CPU, though it could be extended 
to parallelize locally on a GPU or over nodes in a 
compute cluster. 

B. Major Classes of Functions 

1) Loading and Saving: Four functions are used for file 
110. matload and mat save are used to load and save dense 
matrices, while smatload and smatsave load and save 
sparse matrices. All of the binary matrix file formats used are 
described in Sec. Ill-E. Our loading and saving functions have 
been optimized for speed. 

2) Computational: A set of functions compute intermediate 
variables during the evaluation of the gradient or objective 
value. Each of these is named compute_X, where X is the 
name of the intermediate variable. See Table I for the mapping 
between intermediate variable and function. 

3) Parallelization: There are two functions that are respon­
sible for setting up and spawning our parallel processes. 

• parallel_compute_and_sum spawns processes 
for each chunk, and then sums the resulting matrices; 
used to compute each variable with a superscript [k] 
and the sununed version (e.g. B from each B[k]). 

• parallel_compute_and_list used to spawn 
processes that compute each variable in Table I with 
a superscript (k) (e.g. computing each H ik)). 

4http://www.netlib.orglblas 



Variable Dimensions Definition Toolkit Function 
H(k) Li X Nk cr(W�)X(k» compute_h 

\) '" k) H
I

) Lx Nk H(k) 8H(k) (1) (2) compute_hh 
B kl LxL fI(k)fI(k)T compute_b_aux 
Flkl LxC fI(k)T(k)T compute_f_aux 
B LxL L:�l Blkl compute_ b 
F LxC L:�l Flkl compute_ f 

fIt(k) Nk X L fI(k)TB-1 compute_hht 
U LxC B-1F compute_u 

Dlkl CxL T(k)fIt(k) compute_d_aux 
D CxL L:�l Dlkl compute_ d 
slkl 1 X 1 IIUTfI(k) - T(k) II}.. compute_s_aux 
s 1 X 1 L:�l slkl compute_s 

eT(k) Lx Nk 2fIt(k)FD _ T(k)TD compute_ theta t -

'IT(k) 
\') 

L, X Nk . _ ( L, X N .  (k): T(k» W(l),n - E(i.n) 8 H(2)/ e compute-psil 
'IT k) L2 X Nk . _ (k) . L2x :T(k) w( 2)]n - (H(l ) 8 E(j,n) , e ) compute_psi2 

I�l G('i) D X L, X (k) (Hi�i 0 (1 - Hi�i) 0 'IT i�i) compute_gi_aux 
Glkl D X (L, +L2) [Gl�l) Gi�l)l compute_9i 
G D X (L, + L2) L:�l Glkl compute_g 

TABLE I: Details of the steps to compute the objective function and gradient, including the mathematical definition of intermediate 
variables and the corresponding toolkit functions to perform the computation. 

We opt to spawn multiple processes, rather than multiple 
threads, due to a threading limitation in Python's Global 
Interpreter Lock. Each process must be passed the relevant 
intermediate input variables for its chunk (k) of the data. 

C. Core Functionality 

The functionality supported by the toolkit can either be 
imported as a module, or run using our standalone script from 
the command-line. In the latter case, the script is responsible 
for parsing the cOlllinand-line arguments, setting default val­
ues, reading in the initial files, starting the appropriate T-DSN 
operation, and reporting any results, if requested. 

1) Training: To train a T-DSN, you must provide a dense 
input feature file X and a sparse target file T. You may also 
specify the chunk size, number of blocks to stack, among other 
options. After the training of a block has converged, the toolkit 
will write the prediction matrix, Y, to disk, along with the 
weight matrices W1, W2 and U. 

2) Testing: In test-mode, given a trained model, the T-DSN 
toolkit allows one to generate predictions for a new test set. 
These new predictions can be evaluated if the corresponding 
labels are provided in a new target matrix. 

D. Dependencies 

While we try to mmllllize the number of third party 
modules, we do make use of several standard Python modules 
for the sake of efficiency and reliability. Specifically, this 
toolkit uses the following Python modules: numpy, scipy [20], 
sys, struct, gc, time, argparse, and mUltiprocessing. All of the 
modules are distributed by default with python, except for 
numpy and scipy. 

E. File Formats 

The T-DSN toolkit uses two binary file fonnats for its 
files. A dense format is used for feature, weight and prediction 
matrices. The dense format for an N x M matrix consists of: 

1) N as a 8-byte signed integer. 
2) M as a 8-byte signed integer. 
3) The N x M values of the matrix, stored in column 

major order, each as 8-byte double precision values. 

A sparse matrix format is used for the targets. This format for 
an N x M matrix with K non-zero entries consists of: 

1) N as a 8-byte signed integer. 
2) M as a 8-byte signed integer. 
3) K as a 8-byte signed integer. 
4) All non-zero entries are then stored in any order as 

triples (i,j,x): 
a) i as a 8-byte double precision value (row 

index5 for non-zero value). 
b) j as a 8-byte double precision value (column 

index for non-zero value). 
c) x as a 8-byte double precision value (value). 

F Hyper-Parameters 

The T-DSN has a few tunable hyper-parameters; most 
notably, the number of hidden units in each hidden layer 
(L1 and L 2) and the total number of blocks in the network. 
Ultimately, these hyper-parameters should be tuned empirically 
for your problem, but to give intuition for these we report 
results on several datasets over a range of values in the 
following section. 

G. Parallelizing 

Because memory, and not speed, was the original moti­
vation for parallelizing the T-DSN, the toolkit currently only 
parallelizes over CPU cores. By default, the toolkit detects the 
number of cores and amount of memory available on the sys­
tem, and then breaks the problem into sufficiently small chunks 
such that each core can be processing a chunk in memory at 
the same time. Each time a parallelizable calculation is run, 
each core is assigned a set of chunks to process. Inter-process 

SRow and column indexing starts at 1 for Matlab compatibility. 



Data Set Ntrain Ntest D C L; Depth 
Iris 136 7 4 3 4 2 

Car 1,296 432 21 4 75 3 

Abalone 3,113 1,044 10 3 5 7 

TABLE 11: Dataset statistics, including the number of training 
samples (Ntrain), the number of test samples (Ntest), the 
input feature dimension (D) and the number of classes (C), 
and T-DSN hyperparameters selected by grid-search, including 
hidden layer size (Li) and model depth in blocks. 

communication is accomplished via disk. For simplicity, the 
toolkit currently supports only local parallelization on a CPU, 
although we plan to parallelize over CPU or GPU clusters in 
future releases. 

IV. EXPERIMENTS 

In this section, we evaluate the T-DSN Toolkit on several 
standard machine learning datasets and report the results. 

A. Datasets 

Our three datasets are freely available from the UCI Ma­
chine Learning Repository.6 Each dataset is split into disjoint 
train and test sets. Table 11 provides a summary of the dataset 
characteristics, including the number of samples in train and 
test, the dimension of the input and the number of classes. 

1) lris: Roland Fisher's famous Iris data set consists of a 
set of iris flowers. There are only four features (sepal length, 
sepal width, petal length, petal width), and each flower has 
one of three class labels (iris setosa, iris virginica, and iris 
versicolor). 

2) Car: The Car Evaluation data set is a collection of 
vehicles, whose attributes capture various properties of a 
car, and whose labels are whether the car is unacceptable, 
acceptable, good, or very good. 

3) Abalone: The Abalone data set is a collection of phys­
ical measurements of abalone that can be used to predict 
the age of a specimen. Each specimen has eight features; 
sex, length, diameter, height, whole weight, shucked weight, 
viscera weight, and shell weight. The three class labels are age 
ranges: 1-8 years old, 9-10 years old, and 11 + years old. 

B. Tuning 

There are two hyperparameters of the T-DSN to tune: 1) 
Li (= L1 = L2)' the number of hidden nodes in each of 
the two parallel layers, and 2) the depth of the model, in 
blocks. We use five-fold cross-validation on the training set 
to select these hyperparameters. The specific hyperparameter 
values found in experiments our are presented in Table 11. 

C. Results 

We report model test accuracy in Table IIL7 For compari­
son, we cite several previously reported results. 

6https:llarchive.ics.uci.edu/ml/datasets.html 
7Due to the smaU sample size of the Iris test set, we report an averaged 

accuracy, over 50 systems trained on the fixed training set. (There is variation 
in test set accuracy because training is non-deterministic due to random weight 
initialization and non-convexity.) 

Method Accuracy 
T-DSN 0.986 

HIDER [21] 0.967 

CORE [22] 0.966 

Naive-Bayes [22] 0.955 

MCADT [23] 0.953 

C4.5 [22] 0.937 

(a) Iris 

Method Accuracy 
T-DSN 0.970 

TAN [24] 0.941 

BAN [24] 0.940 

Naive-Bayes [24] 0.866 

GBN [24] 0.861 

(b) Car 

Method Accuracy 
HFRBCS [25] 0.702 

Chi-5 [25] 0.667 

T-DSN 0.663 

[shibuchi05 [25] 0.661 

Chi-3 [25] 0.630 

C4.5 [25] 0.156 

(c) Abalone 

TABLE Ill: Experimental results for the Iris (a), Car (b) and 
Abalone (c) datasets. Results within one standard deviation of 
T-DSN are colored in blue. 

To understand the effect of our hyperparameters, we vi­
sualize the average accuracy over 10 random train-test splits 
in Figure 2. For brevity and clarity of the display, we show 
only the values for Li and depths that are adjacent (in our grid 
search space) to the optimal hyperparameters selected during 
tuning. The figure also visualizes a ±1 standard deviation 
interval, also estimated from our 10 random train-test splits, 
to give a sense of the variability of the results. 

D. Analysis 

1) lris: Although our test set accuracy shown in Table III 
is higher than the baseline methods we compare against, the 
small test set size means that all of the baselines fall within one 
standard deviation of our result. Due to the simplicity of this 
task, we need only a few hidden nodes in each parallel layer. 
Our tuning selected L1 = L2 = 4, although Figure 2 shows 
that L1 = L2 = 3 actually slightly outperforms on average. 
Although it is not shown in Figure 2, using only one or two 
hidden nodes per parallel layer leads to heavy degradations in 
performance. Moderately deep (3-6) block T-DSNs seem to 
work best for this dataset. 

2) Car: On the car evaluation dataset, the T-DSN out­
performs the baseline methods, with an almost 50% relative 
reduction in error over the closest baseline. With a relatively 
larger amount of data, tuning our model finds that hidden layer 
sizes of Li = 75 is preferable, although Figure 2 shows that 
there is in fact a wide range of Li that perform comparably. 
The figure also suggests that our selected block depth of 3 may 
not be optimal, and that performance may be further improved 
with slightly deeper models. 

3) Abalone: The T-DSN is outperformed by one of the 
methods reported in [24], while it performs comparably to 
two others and outperforms the last two. Despite the larger 
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Fig. 2: Accuracy confidence intervals for each data set in the neighborhood of the optimal tuned hyperparameters. 

traInIng set size, tuning select the small Li = 5, presumably 
due to the small input and output dimensions. Tuning favored 
a deeper model, of depth seven, although Figure 2 shows that 
performance degrades as the model gets too deep. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we introduce the Tensor Deep Stacking 
Network Toolkit, an open-source implementation of the Tensor 
Deep Stacking Network [11] that is freely available for non­
commercial use. The toolkit is implemented in Python and 
is designed to be easy to use, portable and efficient, with 
minimal dependencies. Our hope is that the availability of this 
toolkit will accelerate research on this and related architectures. 
We also present several new results and analyses on standard 
machine learning datasets, demonstrating the effectiveness of 
the model. Cumulatively over the three reported datasets, our 
model outperforms six of our baselines, is beaten by one, and 
performs comparably to seven. There are many ways the toolkit 
could be extended, and development is on-going. Priorities for 
future extensions include parallelization over a compute cluster 
and support for GPU parallelization. 
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