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ABSTRACT

Increasingly, post-secondary instructors are incorporating in-
novative teaching practices into their classrooms to improve
student learning outcomes. In order to assess the effect of
these techniques, it is helpful to quantify the types of activ-
ity being conducted in the classroom. Unfortunately, self-
reporting is unreliable and manual annotation is tedious and
scales poorly. We introduce a set of deep learning classifiers
for automatic activity annotation, evaluating them on a collec-
tion of classroom recordings, with frames labeled as “single-
voice” (primarily lecture), “multi-voice” (primarily group dis-
cussion), “no-voice” (primarily silent work) or “other.” We
find that our best approach obtains a 7.1% frame error rate
(92.7% weighted F-measure) on held out class sessions from
previously seen instructors (a 7 hr test set), and 10.1% error
(89.1% weighted F-measure) on previously unseen instruc-
tors (a separate 18 hr test set). These represent 32% and 45%
relative reductions in error over the existing state-of-the-art
for this task. We also show that our estimates of how much
classroom time spent per task are better correlated with actual
time spent than existing systems.

Index Terms— classroom, activity detection, deep neural
network, recurrent neural network, education

1. INTRODUCTION

Having a strong science, technology, engineering and math
(STEM) workforce is critical for meeting the needs of mod-
ern society. Currently, college-level STEM education is pri-
marily lecture-based. Many studies have shown that effective-
ness of instruction can be improved by incorporating student-
centered active learning strategies into the classroom [1, 2].
Further, innovative student-centered teaching practices have
been shown to improve student retention rates, particularly for
under-represented students [3]; both are essential to produce
a vibrant STEM workforce. Examples of student-centered ac-
tivities include think-pair-share, in which students reflect on a
question, discuss it in small groups, and share out to the class,
and polling, in which students vote on a prompt via polling
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Fig. 1. Illustration of activity in a sample class session (top is
ground truth, bottom is GRU prediction). The x-axis denotes
time within the class. To reduce clutter, all detections less
than 5s long (a handful of detections) were filtered out.

device (e.g. clicker), often followed by a discussion of the
results. Automatically and accurately quantifying classroom
activity offers many potential benefits. For example, it makes
it easier for individual instructors to track their adoption of
these techniques so that they can identify where to further in-
tegrate them. Used at scale, it would allow STEM education
researchers to track trends and measure the impact of student-
centered techniques on student learning outcomes, enabling
them to offer better recommendations for improving STEM
education. Unfortunately, until recently, large scale quantifi-
cation of student-centered technique use has been impractical.

The Decibel Analysis for Research in Teaching (DART)
tool1 was introduced by Owens et al. [4] to enable large scale,
automatic annotation of classroom activity from classroom
recordings (e.g. as collected by a handheld audio recorder).
In contrast to more complicated schemes designed for manual
annotation (e.g. [5, 6, 7, 8]), they use a streamlined scheme:

1DART is publicly available as a web service at https://dart.sfsu.edu.
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each frame is labeled as “single-voice,” (e.g. lecture, student
question or student answer), “multi-voice” (e.g. group dis-
cussion), “no-voice” (e.g. silent reflection or writing) and
“other.” An example annotation trace for a classroom ses-
sion is shown in Fig. 1, with the top row being ground truth
annotation and the bottom row a prediction from an approach
introduced in this paper. Owens et al. note that various in-
structional techniques form distinctive patterns; for example,
think-pair-share generally follows a “no-voice, multi-voice,
single voice” pattern. The DART system is a decision tree,
where the features are statistics of the energy over a local
window of the audio signal. To train their system, Owens
et al. collected 1,720 hours of classroom audio from 67 dis-
tinct courses, and hand-annotated roughly 85 hours at a 0.5s
granularity, achieving ∼90% frame level accuracy.

While the DART system has very good accuracy overall,
there is room for improvement, particularly in the confus-
ability between the dominant class (“single voice”) and the
less common classes, which tend to have relatively low recall.
This paper contributes three new systems for automatic class-
room activity annotation from audio using deep and recur-
rent neural network architectures and a thorough experimental
evaluation of each system’s generalization to new classes and
instructors. Using DART data, we report substantial improve-
ments in performance over DART, logistic regression and ma-
jority class baselines with minimal increase in computational
cost, enabling higher quality, scalable and automatic annota-
tion of classroom activity.

Researchers have explored several related tasks involving
the analysis of classroom audio. Wang et al. [9] used the
LENA system [10] in K-12 classrooms to automatically de-
tect characteristics of classroom speech such as speaker age
(adult or child), distance from microphone (near or far), pres-
ence of overlapping speech, noise or broadcast speech. They
trained a random forest to map from these features to the
classroom activities “teacher lecturing,” “whole class discus-
sion” and “group work” at a 30 second temporal granular-
ity. In contrast, our system does not require the proprietary
LENA system, learning instead to predict classroom activity
from acoustic features directly. Donnelly et al. [11] automati-
cally detect a set of classroom activities using instructor-worn
wireless microphone audio in a middle school environment,
with a Naı̈ve Bayes classifier on assorted prosodic, NLP and
acoustic features. Our approach instead requires virtually no
feature engineering, opting to learn discriminative features di-
rectly via expressive deep learning models. We report sub-
stantially higher F-measure values, admittedly on a different
dataset with different classroom activity labels. Blanchard et
al. [12] use machine learning models to detect teacher ques-
tions in a middle school classroom environment, finding a
Naı̈ve Bayes model to work best for their task. Finally, class-
room activity detection has also been explored from a video
analysis perspective [13], enabling the system to pick up on
non-verbal cues.

2. METHODS

Deep learning has been shown to produce impressive, often
state-of-the-art, performance on a range of tasks. Here we
introduce deep learning approaches to frame level classroom
activity classification, along with a set of baseline methods.
Each of our neural network methods was implemented in Ten-
sorflow [14] and trained using stochastic gradient descent to
minimize frame level cross-entropy loss.

2.1. Deep Learning Approaches

Deep neural networks (DNNs) model non-linear input-output
relationships through a series of non-linear transformations,
from input through a series of hidden representations to the
output. For each frame, our DNN takes as input x either
the feature vector for that frame, or a window of k frames
(the concatenation of the feature vector for the frame with the
(k− 1)/2 previous and (k− 1)/2 following frames). For our
task, the output y is in R4 and uses softmax activation, giving
posterior probabilities over the four activity labels.

Recurrent neural networks (RNNs), whose hidden rep-
resentation at time t is not only a function of xt but also
x1, . . . , xt−1, have been widely employed for sequence mod-
eling tasks that arise in language processing. We first con-
sider standard (Elman) RNNs [15], feeding at each timestep
the feature vector a single frame, and predicting the activity
label at that frame. Because RNNs are known to struggle with
propagating information over long time spans [16], we also
consider Gated Recurrent Unit (GRU) networks [17] which,
like LSTM networks [16], are effective at storing and utiliz-
ing long-term history. No post-processing of the labels was
done (e.g. to enforce smoothness in labels over time) for any
of our models.

2.2. Baselines

We consider three baseline systems. First, we compare
against DART, described in Section 1, representing the cur-
rent state-of-the-art on this task. The DART predictions were
provided by the authors of [4]. Additionally, to assess the
effect of model depth, we also compare to a logistic regres-
sion classifier (LR) baseline, which has the exact same setup
as the DNN, except the number of hidden layers is set to
zero. Finally, given the imbalance of classes in the data, we
report results for the majority class baseline, which predicts
all frames as single-voice.

3. EXPERIMENTS

3.1. Experimental Setup

We evaluate the effectiveness of our models on an annotated
classroom audio corpus collected by Owens et al. for [4]. The
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corpus contains 85 hours of audio split between 54 class ses-
sions collected from seven instructors. Manual ground truth
annotation is provided every 0.5s using the four-way annota-
tion scheme described in Section 1: single-voice, multi-voice,
no-voice and other. We split the data into four sets to include
train, development and two test sets. Train, development and
test1 are an 80%-10%-10% split of the class sessions from
the first five instructors. Test1 is designed to estimate gener-
alization performance to new class sessions for already seen
instructors. Test2 contains all of the class sessions for the re-
maining two instructors and is designed to test generalization
to unseen instructors. While it would be interesting to explic-
itly measure generalization to unseen classrooms or students,
classroom and student metadata is not available.

The DART corpus audio was collected using Sony ICD-
PX333 handheld audio recorders placed at the front of the
classroom and stored in a compressed (mp3) format. From
each frame we extract 40 log mel-filterbank features plus en-
ergy using HTK [18]. We consider and report results on two
frame sizes: 0.5s with a 0.25s offset, and 1s with a 0.5s offset.
We also tried the traditional 25 ms frame with a 10 ms offset
used for speech processing and found worse performance for
this task (in some cases on par with the majority class base-
line). To provide greater temporal context to the DNN and
logistic regression models, we window the frames, with total
window sizes up to 31. (DART uses a rolling 15s window.)

DNN, RNN and GRU hyperparameters, including learn-
ing rate and number of hidden units, were tuned on the
development set. For the DNN we additionally tuned the
number of layers; we did not stack the RNN or GRU. Trained
models were evaluated on both test sets with frame error
rate, recall, precision, F-measure per label and weighted F-
measure (

∑C
c=1 αcFc, where Fc is the F-measure for label c

and αc ∈ [0, 1] is the fraction of points with true label c).

3.2. Results and Analysis

First, in Table 1 we compare method and frame size, reporting
frame error rate and weighted F-measure on both test sets.
The best overall model is the GRU using 0.5s frames, and
performance begins to stagnate at the longer frame size.

Table 2 shows the effect of window size on the LR and
DNN models using windowed features. It shows a clear trend
favoring larger window sizes. While we could likely see per-
formance improvements with even larger window sizes, given
the comparison to recurrent networks in Table 1, we find use
of recurrent models to be the more promising approach. Con-
trasting the LR and DNN results in Table 2 also highlights the
advantage of model depth, particularly when generalizing to
previously unseen instructors as shown in test2.

Table 3 breaks down the performance of each method by
precision (P), recall (R) and F-measure, for each of single-
voice, multi-voice and no-voice using 1s frames with 0.5s
offsets (other was very infrequent in the training data and not

test1 test2
Frame Size Method Err F Err F

MC 0.200 — 0.222 —
DART 0.104 0.883 0.184 0.773

0.5s/0.25s

LR 0.097 0.899 0.225 0.742
DNN 0.077 0.919 0.155 0.836
RNN 0.076 0.918 0.140 0.850
GRU 0.071 0.927 0.101 0.891

1s/0.5s

LR 0.090 0.907 0.227 0.751
DNN 0.072 0.926 0.177 0.821
RNN 0.077 0.919 0.154 0.838
GRU 0.083 0.914 0.108 0.883

Table 1. Experimental results (frame error rate and weighted
F-measure) on the two test sets contrasting frame size and
method: majority class (MC), DART, logistic regression
(LR), DNN, RNN and GRU. The DNN and LR models used
a window size of 31 frames. Best model of its kind is bolded;
best overall also italicized.

test1 test2
Model W Sz Err F Err F
LR 1 0.158 0.826 0.235 0.711
LR 3 0.131 0.720 0.225 0.728
LR 11 0.105 0.892 0.227 0.742
LR 17 0.095 0.901 0.225 0.745
LR 31 0.090 0.907 0.227 0.751
DNN 1 0.120 0.876 0.215 0.777
DNN 3 0.093 0.903 0.171 0.819
DNN 11 0.080 0.916 0.155 0.832
DNN 17 0.076 0.921 0.142 0.846
DNN 31 0.072 0.926 0.177 0.821

Table 2. Effect of window size (# frames) on logistic regres-
sion (LR) and DNN, fixing frame size to 1s with 0.5s offsets,
measured with frame error rate and weighted F-measure. Best
model of its kind is bolded; best overall also italicized.

predicted by most models, so we omit it from this analysis).
It shows that for for both test sets, deep learning approaches
offer the best performance. It also suggests that single-voice
appears to be the easiest category to distinguish, with average
F-measures across methods on test1 of 0.954, followed by
multi-voice (0.736) and no-voice (0.721). The trend persists
on test2, where the same classes have average F-measures of
0.899, 0.538 and 0.422, respectively. The table also high-
lights how much more challenging the methods found detect-
ing multi- and no-voice for unseen instructors.

While Tables 1, 2 and 3 analyze frame level performance,
one may not always need accurate frame level predictions.
For example, one plausible use case is to simply estimate the
fraction of time spent on single-voice, multi-voice, no-voice
and other activities. To assess performance for this use case,
for each class session we totaled up the number of seconds
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test1 Single Multi No
Method P R F P R F P R F
DART 0.892 0.995 0.941 0.921 0.476 0.628 0.954 0.577 0.719
LR 31 0.935 0.968 0.951 0.764 0.691 0.726 0.887 0.644 0.746
DNN 31 0.948 0.980 0.964 0.852 0.730 0.786 0.801 0.688 0.740
RNN 0.939 0.983 0.960 0.830 0.723 0.773 0.890 0.573 0.697
GRU 0.944 0.968 0.956 0.780 0.751 0.765 0.842 0.601 0.702
test2 Single Multi No
DART 0.818 0.982 0.892 0.773 0.250 0.378 1.000 0.132 0.233
LR 31 0.820 0.915 0.864 0.468 0.277 0.348 0.887 0.360 0.512
DNN 31 0.879 0.914 0.896 0.636 0.533 0.580 0.750 0.365 0.491
RNN 0.882 0.931 0.906 0.678 0.584 0.627 0.735 0.360 0.484
GRU 0.908 0.963 0.935 0.818 0.703 0.756 0.881 0.250 0.389

Table 3. An analysis of the types of errors made by each method, with per-activity precision (P), recall (R) and F-metrics
reported on both test1 and test2. The frame size is fixed to 1s with 0.5s offsets.
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Fig. 2. Analysis of the correlation between the predicted
amount of time spent on single-voice, multi-voice and no-
voice for DART (orange x’s) and GRU (black circles) rela-
tive to the ground truth. DART and GRU R2 listed in each
subfigure. For brevity, “other” activity plots not shown.

predicted for each activity type for DART and GRU and mea-
sured the correlation between those estimates and the actual
time spent on each activity type. The results are shown in
Fig. 2. Six scatter plots compare DART (orange Xs) and
GRU (black circles) to ground truth for three activity types
and both test sets. Coefficient of determination (R2) values
are listed for each case. Consistent with the findings in [4],
the DART system errs on the side of over-predicting single-
voice and under-predicting multi- and no-voice. This makes
sense from the perspective of minimizing false detections of
student-centered activities, which typically manifest as multi-
and no-voice. Fig. 2 shows that the GRU can avoid excessive
false detections, while providing estimates that correlate more
strongly with the true proportion of time spent on activities,
particularly for multi-voice.

4. CONCLUSIONS

This paper introduced a set of deep and recurrent neural net-
work approaches for identifying college classroom activity
from audio recordings. Evaluating on two test sets from the
DART corpus, we show substantial improvements in frame
error rate and F-measure over baseline systems. Notably, we
observe 32% and 45% relative reductions in frame error rate
relative to the current state-of-the-art for the task when gener-
alizing to new class sessions from previously seen instructors
and class sessions from previously unseen instructors, respec-
tively. Additionally, we show high performance on estimating
the total time spent per class session on single-voice, multi-
voice and no-voice activity, including an average R2 across
the two test sets of above 0.9 for single-voice and above 0.8
for multi-voice. We find that a GRU-based system performs
the best overall, although standard RNNs perform well, as do
DNNs with windowed input.

One way this work could be extended would be to use
more sophisticated deep learning models, such as bidirec-
tional and stacked GRU or LSTM networks; we expect that
this would further improve performance. Another direction
would be to integrate the supervised activity classification
models with unsupervised or semisupervised diarization or
speaker change models, leveraging the unannotated data col-
lected in [4] to more accurately segment the classroom audio.
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