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ABSTRACT
Even a single amino acid substitution in a protein can be the cause
of a debilitating disease. Experimentally studying the effects of
all possible multiple mutations in a protein is infeasible since it
requires a combinatorial number of mutants to be engineered and
assessed. Computational methods for studying the impact of single
amino acid substitutions do not scale to handling the number of
mutants that are possible for two amino acid substitutions. We
present an approach for reducing the amount of mutation samples
that need to be used to predict the impact of pairwise amino acid
substitutions. We evaluate the effectiveness of our method by gen-
erating exhaustive mutations in silico for 8 proteins with 2 amino
acid substitutions, analyzing the mutants via rigidity analysis, and
comparing the predictions from a sample of the mutants to that in
the exhaustive dataset. We show it is possible to approximate the
effect of the two amino acid substitutions using as little as 25% of
the exhaustive mutations, which is further improved by imposing
a low rank constraint.
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1 INTRODUCTION
Inferring the effects of amino acid substitutions has a wide range
of applications. Knowing the extent to which a mutation alters
a protein’s stability can aid in drug design studies for delivering
pharmaceutical solutions for combating diseases caused by protein
mutants [25].

One approach to infer the effect of a mutation in the physical
protein is to conduct a free energy of unfolding experiment by
denaturing a protein mutant and its non-mutated form (wild type).
The extent to which the wild type denatures relative to the mutant
is used by the Schellman equation to provide a ∆∆G measurement
(change of Gibbs free-energy) offering a quantitative assessment
of the effect of the mutation(s) [27]. Unfortunately, mutagenesis
experiments on physical proteins are time and cost prohibitive.
Performing even a small subset of all possible mutations in a wet
lab setting and experimentally inferring the effects of those amino
acid substitutions might require months of work.

To complement wet lab work, modeling and computational meth-
ods are available. They strive to predict the effects of mutations,
with varying degrees of accuracy. Early approaches searched for
best side-chain conformations as a measure of the impact of a
mutation [9], and relied on heuristic energy functions or database-
derived potentials [11]. Other approaches are dependent on suffi-
ciently large datasets of homologous proteins [4, 31]. Approaches
based on machine learning (ML), a branch of artificial intelligence,
have also been leveraged to infer the effects of mutations. Some
use support vector machines (SVMs) [7, 15], while others utilize
random forests and similar approaches [16]. Several of these ML
methods achieve high accuracy rates (upwards of 80%) predicting
the effects of mutations involving single amino acid substitutions.

MOTIVATION AND CONTRIBUTIONS
Energy-, homology-, and ML-based approaches for inferring the
effects of mutations have several drawbacks. All but a few of them
permit reasoning about the effects of single point mutations [12,
30], even though there is a clear need to understand the effects of
multiple mutations. For example, for HIV-1 protease it has been
shown that the median number of mutations in the gene which
confers drug-associated resistance to protease inhibitors is 28 [26].

Unfortunately free energy changes for single mutations cannot
be summed to predict the effect of performing those mutations
all at once. There are several such instances in the literature and
ProTherm [2], a database of mutation experiments done in the wet
lab. For example, the single W94L mutation in Barnase Bacillus
amyloliquefaciens yields a ∆∆G of -1.59 (ProTherm entry 2262), and
the single H18G mutation yields a ∆∆G of -0.98 (ProTherm entry
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2263). These two sum to -1.59 + -0.98 = -2.57. However, when both
mutations are performed at the same time in the physical protein,
the experimental ∆∆G value is -1.17 (ProTherm entry 2264).

For this work, we are motivated by a need to explore which pairs
of mutations have an impact on a protein’s structure. Due to the
vast number of possible mutants with two amino acids substitutions
that can be engineered for even a small protein – for a 99 residue
biomolecule, for example, 1,751,211 unique mutants are possible
– this is a big data problem that even for efficient computational
approaches becomes intractable. Our contributions are two-fold.

Firstly, we have engineered a software suite for generating mu-
tants with two amino acid substitutions, and used it to generate
an exhaustive set of possible mutants for each of 8 proteins. We
perform a quick analysis of the flexibility of the in silico generated
mutant and wild type structures using a graph theoretic algorithm,
and rely on our past rigidity metric scores to infer the effects of
the mutations. These exhaustive results are treated as the ground
truth about the effects of the amino acid substitutions.

Secondly, because performing such exhaustive studies is compu-
tationally intensive, we present methods to accurately approximate
the exhaustive data using a fraction of the total samples. In general,
the fewer samples these empirical models are based upon, the
more computationally efficient they will be, but at the expense of
approximation quality. To counter-act the effect of random noise
on the empirical models, we employ a smoothing technique based
on matrix rank, yielding low rank estimates that are able to filter
out noise and improve approximation quality.

2 RELATEDWORK
The majority of computational approaches for inferring the ef-
fects of mutations reason about the impact of single amino acid
substitutions. PoPMuSiC 2.1 [8] makes predictions about ∆∆G and
generates a sequence optimality score. AutoMute [20] is a ML-based
method that requires a large training set. CUPSAT [22] relies on en-
ergy potentials (atomic and torsional angles), and is dependent on
a radial pair distribution function, whose calculation is time inten-
sive. D-Mutant [32] constructs a residue-specific all-atom potential
and requires the use of 1,011 actual protein structures with resolu-
tion <2Å . I-mutant2.0 is an SVM-based tool that correctly predicts
(with a cross-validation procedure) 80% or 77% of the data set, de-
pending on the usage of structural or sequence information [6].
STRUM [24] is a physics-based energy calculation approach that
relies on multiple-threading template alignment. McCafferty [21]
has developed an unfolding mutation screen (UMS) that relies on
residue propensity tables and calculates free energy changes.

Of the few approaches that permit reasoning about the effects
of multiple mutations, none are able to perform screening-like
analyses. MAESTRO and MAESTROweb [18] are machine learning
based approaches for predicting ∆∆G values for mutations, but do
not permit a screening of all possible multiple-mutation variants.
DUET [23], although it predicts ∆∆G, does not allow a user to per-
form a screen in which a subset of pairwise mutations are assessed.
In our most recent work, we developed a compute pipeline for
generating in silico all mutants with pairwise mutations [19], and
generated an Allostery Impact Map to identify pairs of residues
that cause a disruption to the protein’s stability.

Low rank matrix factorization is at the heart of a wide range of
data analysis techniques; for example, the popular principal com-
ponent analysis dimensionality reduction technique. Low rank is
often found in matrices describing interactions between two types
of entities. One famous example is the Netflix movie recommenda-
tion problem [3], where the goal is to predict what rating a given
user would assign to a given movie. The low rank property arises
because the inherent dimension of the interaction is significantly
smaller than the ambient dimension. For example, there are kinds
of users and kinds of movies, and the interactions between them
explain much of the ratings in user-movie ratings.

In Section 3.3, we explore low rank structure in matrices describ-
ing the effects of pairwise mutations in proteins. We use a singular
value decomposition to find a low rank approximation based on
the well-known Eckart-Young-Mirksy theorem [10].

3 METHODS
Exhaustive mutation sets have been used in the past to explore and
identify impactful amino acid substitutions via Allostery Impact
Maps (AIMs) [19, 28]. However, generating all possible mutants
with two amino acid substitutions can take several weeks – even
months – of compute time. In this paper, we present a multi-phase
compute pipeline (Fig 1) for evaluating several sampling methods
to reduce the number of pairwise mutations required to make good
predictions about the effects of pairwise mutations.

Ground
Truth AIM

Empirical
AIM

Low Rank
AIM

Sampling

Low Rank
Approximation

PDB
File

Generate Mutants 
& Analyze Rigidity 

Evaluate Empirical and Low Rank
Against Ground Truth

Empirical
Mutation
Tensor

Ground Truth
Mutation
Tensor

Figure 1: Pipeline: We generate an exhaustive mutation set
(blue), sample (yellow), and generate empirical and low rank
Allostery Impact Maps (red).

Our pipeline improves the scalability of the prediction operation
for larger proteins and resulting exhaustive pairwise mutation sets.
We also evaluate the quality of the proposed sampling methods
by quantifying how close the predictions are with respect to ex-
haustive AIMs. Our pipeline is comprised of three phases. Phase 1:
Generating exhaustive pairwise mutation set – This phase is
required for validating the effectiveness of our sampling methods.
There are two tasks: (i) identifying the exhaustive set of all possible
mutants having two amino acid substitutions, and (ii) analyzing
the effects of pairwise mutations using rigidity analysis. Phase 2:
Sampling from exhaustive pairwise mutation set – We apply
our proposed sampling methods to specifically study the impact
of pairwise mutations to hydrophobic, hydrophilic, and pairwise
mutations sampled at random. Phase 3: Low Rank smoothing –
To improve the approximation quality of the empirical (sampled)
AIMs, we impose a low rank constraint, producing a low rank AIM.



(a) cartoon (b) rigidity results

Figure 2: Rigidity analysis for PDB file 1csp (a) identifies
atoms belonging to the same rigid clusters (b).

This low rank smoothing reduces noise and improves approxima-
tion quality. We explain each of these phases, as well as details of
the tasks involved, in the following subsections.

3.1 Exhaustive Pairwise Datasets
GeneratingMutant Structures: For this work, we use the ProMuteHT
software [1], and generated all possible mutants with two amino
acid substitutions for 8 proteins (Table 1).

Table 1: PDB files used, and mutants generated

PDB file num residues mutants runtime
1crn 46 373,635 23 min
1pga 56 555,940 37 min
1bpi 58 596,733 42 min
1rop 63 705,033 51min
1csp 67 798,171 1.1hr
1vqb 87 1,350,501 1.5 hr
1hhp 99 1,751,211 2.6 hr
2lzm 164 4,825,126 8.9 hr

Rigidity Analysis: Rigidity analysis [14] is a fast graph-based
method that identifies rigid regions of biomolecules [17]. Atoms
and their chemical interactions are used to construct a mechanical
model and associated graph of a protein, whose analysis via a pebble
game algorithm [13] identifies rigid clusters of atoms (Fig 2).For
this work, we tally the counts and distribution of rigid clusters
in the wild type, as well as a mutant, to quantitatively assess the
effect of the amino acid substitutions performed in silico. We use
the following rigidity metric (see [28]) :

RDWT→mutant :
i=LRC∑
i=1

i × [WTi −Muti ] (1)

whereWT refers to Wild Type,Mut refers to mutant, and LRC is
the size of the Largest Rigid Cluster (in atoms). Each summation
term of RDWT→mutant calculates the difference in the count of a
specific cluster size, i , of the wild type and mutant, and weighs that
difference by i .

Allostery Impact Map: We use the rigidity analysis data to create
anExhaustiveMutationTensor,T ex ∈ Rn×n×361. The (i, j,k )th
element, T ex

i jk , contains the rigidity data for performing the kth

pair of substitutions (out of 192 = 361 total possible pairs of substi-
tutions) at residues i and j.

From T ex , we build an Exhaustive Allostery Impact Map (AIM),
Mex , [19] which provides an infographic (Fig 3) based on quantita-
tive data for reasoning about the effects of mutating two residues.

Because of the large count of structures that make up an exhaus-
tive pairwise mutation set for a protein, we distribute the computa-
tional tasks for Phase 1 among 165 machines. Each machine further
subdivides each task via process-level parallelism by spawning 1
mutex process for mutation for each available compute core. We
achieve a process-level granularity of 19k

(n
k

)
/(165 · 8) when gen-

erating all possible protein mutants containing k = 2 amino acid
substitutions for a protein with n residues. Our compute pipeline
leverages the knowledge that no two pairwise protein mutations
depend on each other to parallelize the generation and analysis of
all pairwise mutations, and the mutually independent computation
tasks are run in a distributed computing environment.

3.2 Empirical Allostery Impact Map
In estimating the exhaustive AIM, we use three methods of sam-
pling to derive three different empirical AIMs. These three methods
include: sampling randomly from the set of all mutations (T emp

tr ),
sampling randomly from the set of mutations in which all sub-
stitutions are to hydrophobic amino acids (T emp

phob ), and sampling
randomly from the set of mutations in which all substitutions are
to hydrophilic amino acids (T emp

phil ).
For each of these three sampling methods, we analyze the quality

of approximation as a function of the quantity of sampling. First,
we sweep the number of mutation site pairs sampled in {25%, 50%,
75%, 100%} while holding the number of mutations sampled for
each of these site pairs constant at 19. Additionally, in empirical
AIMs for which less than 100% of mutation site pairs are sampled,
we have ‘unfilled’ empirical AIMs where mutation site pairs are
left unsampled, and ‘filled’ empirical AIMs where all unsampled
mutation site pairs are set to the average metric of all sampled
mutation site pairs. Second, we sweep the number of mutations
sampled for each mutation site pair in {5%, 10%, ..., 95%, 100%} while
holding the number of mutation site pairs constant at 100%. In

(a) sample AIM (b) AIM for pdb 1crn

Figure 3: Allostery Impact Maps : A cell color specifies the
sum values for the rigidity metric for all 361 mutants gener-
ated by exhaustively mutating the amino acids indicated by
x and y axis values. The cell marked A (a) at x = 3, y = 2 is the
sum metric for all 361 mutants for when residues i = 3 and
j = 2were exhaustivelymutated. (b) is reproduced from [19].



this phase, our pipeline again leverages a distributed computing
environment; we distribute the exhaustive pairwise mutation sets
for 8 proteins to 8 compute nodes for sampling.

3.3 Low Rank Allostery Impact Map
While our empirical AIMs are fast to generate, they paint an in-
complete picture of the exhaustive AIM. “Filling in” the missing
information requires making some assumption about global struc-
ture of the exhaustive AIM. We assume that the exhaustive AIM is
low rank. The rank of a matrix is the number of linearly independent
columns (and rows) in the matrix; equivalently, it is the number
of non-zero singular values. Rank can be thought of as a notion
of complexity in the matrix: low rank matrices can be explained
by a relatively small number of underlying factors. Figure 4 plots
the singular values (in the conventional descending order) for the
exhaustive AIMs for the proteins we considered. While none of the
matrices are exactly low rank, all are approximately low rank: most
of the singular values are approximately zero.

If we letMemp be the empirical AIM, our low rank matrix is the
solution to the following convex optimization problem:

argmin
M

∥Memp −M ∥F (2)

s .t . rank(M ) ≤ R (3)

where R is the desired rank (a value to be assessed empirically).
The famous theorem of Eckert-Young-Mirsky states that the closed
form solution to this problem is:

M
emp
R = U ΣRV

T . (4)

HereU and R are the left and right singular values ofMemp , respec-
tively, and Σ is the matrix whose diagonal contains the singular
values of Memp ; all three matrices can be obtained by a singular
value decomposition. ΣR is Σ with all but the R largest singular
values replaced by zeros. Our low rank AIM, Mlr , is defined to
be Memp

R , the optimal rank R approximation of Memp . Note that
this assumes we want to approximateMemp at all sites, which is
suboptimal when using a sampling strategy that does not sample all

Figure 4: Singular values for 8 proteins, revealing approxi-
mate low rank structure. Singular values were normalized
by dividing by the largest singular value.

sites. Despite this limitation, our computational experiments and
results show that the approach works well, and we leave weighted
approximations [29] to future work.

3.4 Evaluation Metrics
We evaluate the quality of approximation using the Sum of Absolute
Error (SAE) for the exhaustive AIM:

SAE =
n∑
i=1

n∑
j=1
|M

дt
i j −Mi j | (5)

where M is either an empirical AIM, Memp , or a low rank AIM,
Mlr . As the number of samples increases,Memp approachesMex

and its SAE approaches zero.

4 RESULTS - CASE STUDIES
We evaluate the efficacy of our low rank smoothed sampling meth-
ods by computing the SAE compared to exhaustive over empirical
approximation (the lower the better), and measuring how accu-
rately a significantly reduced subset of the exhaustive mutation
set can reconstruct the characteristic bands representing mutation
sensitive sites.

4.1 Low Rank Versus Random Sampling
The low rank model consistently reduces SAE relative to the em-
pirical model on 1crn for small values of the rank, R (Fig 5). As R
approaches 46,Mlr approachesMemp and the improvement con-
verges to 0. The biggest improvements by smoothing are in the
“Mutation to Hydrophobic” case, suggesting this subset of the data
is particularly well-suited to the low rank assumption. Unlike 1crn,
for 1pga (Fig 6) we see a distinctive increase in improvement as
the fraction of sites sampled approaches 1.0, achieving a relative
reduction in SAE of up to 34%. This indicates that all mutation
sites encode unique information as opposed to 1crn where most
information is encoded in a small number of sites.

4.2 Low Rank Approx. & Sampling Error
Fig 7 plots the absolute error (SAE) for the empirical and low rank
models for the three sampling types (Y axis) across ranks (X axis),
for the “unfilled” sampling strategy on 2lzm. There is a clear basin
of good values of R ranging from 8-32. For sampling at 75% of
pair-wise mutation sites for 1hhp (Fig 8), the“sweet spot” for the
low rank approximation is at a much lower rank than for 2lzm.
Interestingly, the error is much higher for “to hydrophobic” than
“to hydrophilic” in this case. This might be explained biophysically,
because mutating a residue from a hydrophilic to a hydrophobic
one might cause a surface residue to be energetically unfavorable.

4.3 Heatmaps
For 1crn (Fig 9, showingMex ,Memp andMlr ), the low rank model
is able to detect the banded, low rank structure of the exhaustive
AIM from the samples in the empirical data, but the heatmap tends
to over-generalize. For other proteins (not shown), the low rank
models achieve similar results.



(a)

(b)

(c)

(d)

Figure 5: Improvement in SAE by low rank smoothing rel-
ative to “filled” empirical approx for 1crn. Randomly sam-
pling 19mutations across mutation site pairs at 25 (a), 50 (b),
75 (c) and 100% (d) sampling.

(a) (b)

(c) (d)

Figure 6: Improvement in SAE by low rank smoothing rel-
ative to “filled” empirical approx for 1pga. Randomly sam-
pling 19 mutations across mutation site pairs at 25(a), 50(b),
75(c) and 100%(d) sampling.

Figure 7: Empirical approximation error against low rank
approximation error for various ranks when sampling
across 25% of mutation site pairs for 2lzm.

5 CONCLUSIONS & FUTUREWORK
We exhaustively generated mutant sets for 8 proteins, and analyzed
both the wild type and mutants using rigidity analysis; we call this
data our ground truth. Because even computational approaches for
such exhaustive screens are time consuming, we have presented
several methods to accurately approximate the exhaustive data
using a fraction of the total samples from the exhaustive set.

We observed several interesting results when comparing the
exhaustive, empirical approximation, and low rank approximation
Allostery Impact Maps. In some proteins – 2lzm – prediction ac-
curacy was sensitive to random noise in the data. In those cases,
a large rank was needed to smooth out the noise when sampling
only 25% from the exhaustive mutation set. For some proteins –
1pga – many mutation sites encode unique information, but for
others such as 1crn, most information about the effects of pairs



Figure 8: Empirical approximation error against low rank
approximation error for various ranks when sampling
across 75% of mutation site pairs for 1hhp.

Figure 9: 1crn : Exhaustive (left), empirical approximation
(upper right) and low rank approximation (low right) AIMs.

of substitutions was encoded in a small number of sites. The fact
that a choice of sampling rate, and choice of the specific type of
sampling (whether from mutations to hydrophobic, or sampling
from mutations to hydrophilic residues) results in different low
rank approximations for different proteins suggests that any one
sampling strategy is not generalizable for all biomolecules.

There are ways the low rank approximation in this work could
be extended. For example, weighted low-rank decompositions [29]
would likely improve the quality of the low rank approximation. It
would also be worth exploring low rank decompositions explicitly
designed to be robust to noise [5].
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